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ABSTRACT As denial of service attacks become more sophisticated, the source-side detection techniques
are being studied to solve the limitations of target-side detection techniques such as delayed detection and
difficulty in tracking attackers. Recently, some source-side detection techniques are being studied to use
an adaptive attack detection threshold considering seasonal behavior of network traffic. However, because
patterns of network traffic usage have become irregular with increased randomness and explosive traffic, the
performance of the adaptive threshold technique has deteriorated. In addition, by limitations of the local view
of a single site, distributed attacks from multiple sites may not be detected. In this paper, we propose a LSTM
(Long Short Term Memory) based collaborative source-side DDoS (Distributed Denial of Service) attack
detection framework which provides the attack detection result of a collaboration network in a global view.
The proposed framework applies LSTM-based adaptive thresholds to each source-side network to mitigate
performance degradation caused by irregular network traffic behavior. Also, in order to overcome the
limitation of performance caused by the local view of single source-side network, the proposed framework
constructs a collaborative network through multiple detection sites and aggregates feedback from each site,
such as detection rates, local traffic patterns, and timestamp. The collaborative attack detection technique
uses the aggregated feedback to determine whether the attack is finally detected and shares the finial detection
results with multiple sites. Depending on this final detection result, the adaptive thresholds of each site are
reset. Through extensive evaluation of actual network traffic data, the proposed collaborative source-side
attack detection technique shows around 15% lower false positive rate than the single source-side attack
detection technique while maintaining a high detection rate.

INDEX TERMS Network security, DDoS attack, SDN, LSTM, collaborative detection, traffic seasonality

embedding.

I. INTRODUCTION
Because of the ubiquity and increasing popularity of IoT
(Internet of Things), it contributes significantly to improv-
ing the quality of human life, from traditional equipment to
general household goods. However, the threat of exposure
to DDoS attacks that exploit vulnerabilities of IoT devices
distributed in multiple regions is increasing rapidly [1].
A victim-side detection methods have disadvantages such
as delay in detection and difficulty in tracking the attacker.
To alleviate these disadvantages, a source-side detection
method has been studied [2].

Howeyver, the volume of traffic observed in the source-
side network is relatively small compared to the victim-side
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network, the normal traffic can be easily mixed with attack
traffic. To separate a relatively small volume of attack traf-
fic, an adaptive threshold method using the observed traffic
volume was studied [3]. However, if the observed traffic is
mixed with the attack traffic, the adaptive threshold method
should separate the attack traffic from the observed traffic to
calculate the next threshold. In order to detect the attack traf-
fic, dynamic adaptive threshold methods based on observed
traffic volumes are studied [4]. Recently, with the activation
of time series deep learning neural networks, the short-term
network traffic volume prediction methods based on time
series deep learning neural networks are studied also [5]-[7].

In linear network traffic in which characteristics such as
self-similarity [8], and seasonality [9] are observed, this
method show high performance. However, because of unex-
pected behavior of network users, network traffic may have
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high jitters with frequent explosive traffic and it show non-
linear properties [10]. In non-linear network traffic where
characteristics such as burstiness [11] and randomness [12]
are observed, performance of these methods are degraded.
To mitigate this degradation, we need to consider the rela-
tionship between traffic states such as distinguishing different
network traffic in embedding spaces [13]-[16].

However, when a large DDoS attack is occurred on mul-
tiple sites, the source-side attack detection method in fixed
single site may not detect the attack traffic by limited local
view [17]. Also, the performance of source-side attack detec-
tion methods may be different depending on the network
characteristics located on multiple regions [18], [19]. In order
to improve the performance of source-side attack detection
method, the collaborative attack detection methods which
share attack detection result between source-side network
of multiple regions are studied [20]-[23]. These methods
calculate value that represent the performance of each site
and these values are used to determine whether the attack
is detected with the detection results of each site. However,
because of irregular behavior patterns of network users if
the detection results are aggregated from multiple source-
side networks where non-linearity is observed, the perfor-
mance of the collaborative attack detection methods may be
degraded. Therefore, collaborative attack detection methods
need to consider not only the attack detection results and
performance of collaborative sites, but also the relationships
between collaborative sites and time dependency of individ-
ual site characteristics.

In this paper, we propose an LSTM-based collaborative
source-side DDoS attack detection framework. The proposed
framework shares the detection results of source-side attack
detection method which is located on multiple source-side
networks. Through the statistics of the detection results which
is shared in advance, the statistical weight of each source-
side attack detection module is calculated by considering
the probability of attack detection and the probability of
false positive at the corresponding time index. The statistical
weights can represent the performance of the source-side
attack detection module, but cannot cope with false positives
caused by irregular traffic patterns. The proposed framework
aggregates the information such as the detection result, traffic
change rate, and time index of each source-side DoS attack
detection module located in different time zones. By using the
aggregated information with the statistic weight of the source-
side attack detection modules, the collaborative source-side
attack detection module determines whether the attack is
finally detected. The final detection result is shared to adjust
the adaptive threshold of collaboration sites. In order to verify
the effectiveness of the proposed framework, we evaluated the
detection rate, false positive rate, and balanced accuracy of
the proposed method according to the average traffic volume,
jitters, and burst ratio based on actual DNS (Domain Name
System) traffic data.

The rest of this paper is arranged as follows. Section 2
introduces the research progress of related techniques of
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adaptive threshold method for preventing DDoS attack
by cooperating the source-side attack detection system.
Section 3 describes the proposed collaborative source-side
DoS attack detection system. Section 4 verifies the effective-
ness of the algorithm though experiments. Section 5 summa-
rizes conclusion and future research directions.

Il. RELATED WORK

SDN can provide a more flexible, dynamic, manageable,
and adaptive network [24]. SDN makes the network flexible
by efficiently handling traffic congestion created by modern
applications with dynamic behavior [25]. Because the net-
work control logic can be programmed by SDN, the overall
network enables easy configuration and quick optimization
of network resources. In addition, the network administra-
tors can dynamically adjust traffic flow to meet application
demands. The dynamic network architecture provided by
SDN makes it easier to detect and migrate DoS attacks [26].
An SDN based DoS defense mechanisms can be classified
according to the location of deployment: victim-side defense
mechanisms and source-side defense mechanisms.

The victim-side defense mechanism detects, filters, and
limits malicious traffic at routers located close to the victim.
Detecting DoS attacks on the victim-side is simple because
the volume of malicious network traffic is extremely high
and the attack traffic can be clearly distinguished from the
observed traffic. However, the source-side defense mecha-
nisms prevent generating attack traffic to a victim by iden-
tifying malicious packets that pass a gateway of a subnet
where the attack sources reside [27]. The one of method of
a source-side DoS attack detection mechanism is predicting
the volume of normal network traffic. The volume of network
traffic observed in the source-side network is relatively small,
and more accurate prediction of network traffic is required in
order to adjust threshold in a fine-tuned manner [3], [4].

In general, the statistical characteristics of traffic
observed on the source-side network are time dependency,
self-similarity, seasonality, non-linearity, randomness and
burstiness. In the network where the linear trend is revealed,
the statistical detection methods such as ARIMA(Auto-
Regressive Integrated Moving Average) and exponential
smoothing shows the high performance. Yaacob ef al. used
ARIMA method to detect potential attacks that may occur in
the network [28]. Chan et al. used a neural network develop-
ment approach based on an exponential smoothing method
which aims at enhancing previously used neural networks
for traffic flow forecasting [29]. In linear network traffic in
which characteristics such as self-similarity, and seasonality
are observed, these methods show high performance.

However, this approach does not consider the irregu-
lar usage patterns of network users such as non-linearity,
randomness, and burstiness. Recently, there are few stud-
ies which uses LSTM to predict network traffic volume.
Ramakrishnan et al. proposed RNN architectures as an
approach towards solving the network volume prediction
problems [5]. Lazaris et al. presented a network traffic
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prediction framework that uses real network traces to train
LSTM and generate predictions at short time scales [7].
Geng et al. proposed LSTM and applied historical network
traffic data to predict traffic flow [6]. For the stability of the
prediction of LSTM by solving the long-term dependency
gradient vanishing and exploding, a network traffic trend
is distinguished from other network traffic trend. To solve
this problem, the LSTM training model of network traffic
trend can be efficiently customized by applying different
embedding space [13]-[15].

The source-side attack detection mechanisms usually
detect the traffic flow fluctuations in Internet routers or
gateways near the sources, but have limitations in terms of
detection accuracy and delay.

Moreover, this mechanism cannot capture the characteris-
tics of large-scale distributed attacks. BH Song et al. proposed
an effective DDoS defense system using a collaborative
method between distributed IDRSs(Intrusion Detection and
Response Systems) located around the attack sources or vic-
tim network [30]. However, because the scale of end-to-
end service becomes larger, IDRS located on the source-side
needs to consider computing resources for packet sampling.
At this time, in order to reduce computing resources in IDRS,
it is necessary to use the network traffic volume instead of
packet sampling for detecting DDoS attacks. Yeom er al.
proposed a collaborative source-side attack detection method
to more accurately detect DDoS attack in multiple networks,
taking into account the detection performance in different
time zones [23]. This method detects DoS attacks by applying
a margin to the adaptive threshold at each source-side, and
shares the detection results and the weights which repre-
sent the performance of each source-side attack detection.
Sharing the statistical weight with each source-side attack
detection system can alleviate the side-effect of the adaptive
threshold where the detection rate and the false positive rate
are increased. However, when the traffic pattern is changed
on the source-side, the optimal margin applied in adaptive
threshold will also be changed. Then, the simulation for
calculating statistical weight should be processed. Therefore,
in collaborative attack detection method, it should be possible
to consider the degree of traffic congestion on each source-
side. If the collaborative source-side attack detection tech-
niques consider not only the statistical weight but also the
traffic pattern, then the performance can be improved. In this
paper, we propose a LSTM-based collaborative source-side
attack detection framework considering the performance and
traffic patterns which are cooperative with source-side attack
detection systems.

Ill. COLLABORATIVE SOURCE-SIDE ATTACK DETECTION
FRAMEWORK

The source-side attack detection methods use the adaptive
threshold to detect attack traffic mixed with a relatively
small amount of traffic volume, where non-linearity features
such as high jitter and high burst rates are observed in
the source-side network, the adaptive thresholds may have
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low performance. In order to improve the performance of
adaptive threshold, it is necessary to predict network traf-
fic using time series deep learning techniques after attack
detection. In addition, it is required to share the detection
results of collaborators to overcome the limitation caused by
the local view of single site. At this time, the collaborative
attack detection module considers the relationship between
source-side networks and the time dependency between the
detection information aggregated from each sites. Figure 1
shows the proposed collaborative source-side attack detection
framework that determines whether attack is detected or not
by aggregating the detection information from collaborators.
The proposed framework consists of four components as
follows: source-side attack detection system, event handler
module, trust management module and collaborative attack
detection module.

A. SOURCE-SIDE ATTACK DETECTION SYSTEM

The proposed source-side attack detection system can be
deployed on the gateway to detect DoS attack traffics which
flow from subnet to the victim. This system captures network
traffic from the gateway through samplers such as a DNS
sampler and a NTP sampler by using SDN [4]. When the
amount of captured traffic is rapidly increased by being mixed
with attack traffic, the adaptive threshold can be used to
effectively detect the attack. The proposed system consists of
two modules as follows: the adaptive threshold module, the
LSTM-based normal traffic prediction module

1) ADAPTIVE THRESHOLD MODULE

Because the volume of traffic observed in the source-side
network is relatively small compared to the traffic observed in
the victim-side network, the observed traffic volume during
the unit time is very sensitive. The adaptive threshold is used
to detect attack traffic mixed with normal traffic. In every time
windows with constant size T, the network traffic is captured
and the volume of the observed traffic in the z/” time window
is defined as s,. Whenever the network traffic is captured, the
adaptive threshold 6, is applied to s, in order to determine
whether the observed traffic contains malicious attack traffic
or not. The detection threshold, 6,, is set dynamically by
adding margin, §, to the volume of forecasted traffic, 5,41,
as shown in the equation 1.

041 = (1 +8) * Sz41 (D

This detection threshold, 6,41, is dynamically adjusted by
using the volume of forecasted traffic, s;41. The volume of
forecasted traffic 5,1 is calculated to an exponential smooth-
ing algorithm as shown in the equation 2.

Se41 = xs;+ (1 —a)x5; 2

However, when an attack is detected, it is necessary to sep-
arate the attack traffic from the observed traffic to calculate
the next threshold. To separate attack traffic from observed
traffic, the predicted volume of normal traffic in the z” time
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FIGURE 1. Collaborative source-side attack detection framework.
window, Spredicr, » 1 required as shown in equation 3.
*
Sz4+1 = Q * Spredict, + (I —a)*s; (3)
. . . . RelLU
Spredict, 18 set by multiplying the volume of observed traffic s
in the previous (z — 1) time window, s,_j, to the traffic RelU
changing rate in the 7" time window, ch;, as shown in the 4
equation 4. RelLU
A A

Spredict, = Sz—1 * Chpredict, 4

When the attack is detected by comparing the detection
threshold 6, with the observed traffic s,, the predicted chang-
ing rate chpredgicr, 1S transmitted with the changing rate of
observed traffic ch, and timestamp ¢, from the LSTM-based
normal traffic prediction module.

The proposed adaptive threshold 6, is set on the source-
side attack detection systems that is located on each side.
And each of source-side attack detection system share the
detection results SR, with the collaborative source-side attack
detection framework. The detection result SR, is calculated as
shown in the equation 5.

1 if s,>6,

SR, = .
0 ifs, <6,

()

Later, this detection result SR, becomes the component of
the feedback messages with the changing rate of observed
traffic ch, and timestamp ¢, after receiving the consultant
message from the proposed trust management module of the
collaborative source-side attack detection framework. When
the final detection result FR, comes out from the collaborative
attack detection module of the proposed framework, it should
be transmitted to the source-side attack detection systems
to calculate the detection threshold 6,. The value of final
detection result FR, will be 0 (normal) to 1 (attack). Finally,
the adaptive threshold calculated by determining whether
attack is detected or not in the source-side attack detection
system is as shown in the equation 6.

Sz41 = a*x (1 — FRy) * 5; + FR; % Spredict,)
+( —a)*xs; (6)
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FIGURE 2. Architecture of LSTM-based traffic volume prediction model.

2) LSTM-BASED NETWORK TRAFFIC VOLUME PREDICTION
MODEL
For improving the performance of adaptive threshold, the
accurately estimating change rate of normal traffic ch, in 7"
time window is important. For this estimation, the proposed
approach uses LSTM which is a time series neural network
model. Figure 2 depicts the architecture of the proposed
LSTM-based traffic volume prediction model. This model
consists of three LSTM layers and three dense layers. Among
these three dense layers, the first two layers use ReLLU (Rec-
tified Linear Unit) activation function and the last layer uses
Linear activation function. Each layer includes 20 nodes.
For training and testing the LSTM-based traffic volume
prediction model, it is necessary to manage observed traffic
to the matrix. The matrix of observed traffic to collect the
volume of observed traffic s;; in the i time window on ;"
day from the adaptive threshold module is represented as S =

Sttt Sj1
. 1440 .
, where i € [1, T] at a given constant

St ot Sji
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time interval n and j € [1,m] for m day. However, when
observed traffic is mixed with attack traffic, the predicted
volume of normal traffic spredic;, is managed instead of the
observed traffic s,.

With this matrix of observed traffic, the input vector for
the LSTM model is generated in order to ensure the stability
of the prediction. The input vector consists of three features
including the changing rate of observed traffic ch;,, the time
window index t,, and the traffic trend v, which are corre-
sponding to the z” time window. The input vector at the z*
time window represents as SI, = (ch;, t;, v;).

The LSTM model trains with the input vectors to predict
the changing rate of normal traffic. In detail, the LSTM model
uses 20 continuous input vectors SI;_19,SI;—18,...,SI;
from (z—19)" to z", and this model provides out-
put as the predicted changing rate at the (z+ 1)” time
window, chpredict,, , -

The first domain of the input vector is the changing rate
of observed traffic ch;, which is the changing rate between
two continuous the volume of observed traffic. Because the
volume of observed traffic is managed in the matrix of
observed traffic S, the changing rate of observed traffic is
also managed in the matrix. The matrix of changing rate
of observed traffic C which collects the changing rate of
observed traffic chy; in the i time window on j day is

ch 11 s Chj1

represented as C = . Accordingly, the

C/’lli s C/’lj,'
changing rate of observed traffic in the z” time window on
the y" day, chy,, can be calculated as the equation 7.

s
chy, = —— — 1 (7)
Syz—n

The second domain of the input vector is the time window
index for the changing rate of observed traffic. The matrix
of time window index 7 which collects the time window
index ¢; in the i™ time window on j™ day is represented as
1 - I

T = . The time interval n is set to five

i et
minutes elcllual to the ﬁze of time window 7, and the length
of time window on one day becomes 288. Accordingly, the
time window index fy in the z” time window on the y™ day
has values between 1 and 288.

The third domain of the input vector is the traffic trend,
which represents the characteristics of network traffic includ-
ing seasonality, burstiness, and randomness. The traffic trend
is categorized by considering various characteristics of net-
work traffic. The categorized traffic trend v, is embedded
through one-hot encoding as shown in the equation 8, where

o is the number of the traffic trend which can be categorized.
VZ:{el9e23-'~set)}3 VE{O,]} (8)

When the predicted change rate chpreqic;, comes out from
the proposed LSTM-based traffic prediction volume module,
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it is sent to the adaptive threshold module along with the
change rate of observed traffic ch; and timestamp ¢,.

3) TRAFFIC SEASONALITY EMBEDDING

The network traffic trend is necessary to express the rela-
tionship between the seasonal patterns of traffic observed per
unit time in order to clearly improve the performance of the
LSTM model. This embedding method can be defined as a
static embedding method and a dynamic embedding method.

The static embedding method categorizes the traffic trend
into a given number of states in a static manner. That is, a day
is divided into a given number of time zone by considering the
seasonal pattern of network traffic. For example, in general,
traffic trends increase during the morning when people start
their activity, fluctuate from the afternoon to early evening
when people are active, and decrease during the subsequent
hours. Then, the network trend can be categorized into three
distinguished trends such as increasing trend, fluctuating
trend and decreasing trend. Once the trend category is deter-
mined by using the time index, the traffic trend corresponding
to the 7 time window of a day is embedded with one-hot
vector encoding as v, = {ey, ez, e3}, v € {0, 1}. For example,
{1,0,0} denotes the increasing trend, {0,1,0} denotes the
fluctuating trend and {0,0,1} denotes the decreasing trend.

The dynamic embedding method categorizes the traffic
trend into a given number of states in a dynamic manner by
considering the traffic changing rate of a given time win-
dow. Figure 3 shows the state selection mechanism based on
the traffic changing rate, and this mechanism calculates the
changing rate between observed traffic volumes of z” and
(z — n)"* time window. The length of embedding space
depends on the granular expression of traffic trend, and it may
affect to the performance of LSTM-based network traffic pre-
diction. If n is bigger, the embedded traffic trend represents
longer period of time. Through the degree of the changing
rate, the state of traffic trend can be categorized into five states
such as Further Increasing, Increasing, Fluctuation, Decreas-
ing, and Further Decreasing. With this five states, we may
use different embedding space such as v, = {e1, e2} (Increas-
ing, Decreasing), v, = {ej, e2, e3} (Increasing, Fluctuating,
Decreasing), v, = {ey, ez, €3, e, e5} (Further Increasing,
Increasing, Fluctuating, Decreasing, Further Decreasing). For
two states embedding, the traffic trend is distinguished by
checking whether the changing rate ch; is positive or negative.
For three states embedding, the traffic is used to categorize the
traffic trend. If the changing rate ch, is larger than t the traffic
trend is considered as Increasing state. If the changing rate ch,
smaller than 7 the traffic trend is considered as Decreasing
state. Otherwise, the traffic trend is considered as Fluctuation
state. For five states embedding, two traffic trend lines, T and
27, are considered to categorize the traffic trend.

When preparing an input vector, the traffic trend is embed-
ded as an encoded hot-vector. If the traffic trend is catego-
rized in three states, the length of the encoded hot-vector is
three. In here, we may focus state transitions rather than the
state itself. The state transition means that the state changes
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FIGURE 3. Dynamic traffic state mechanism.

between the previous time window and the current time win-
dow. If traffic trend has three states, trend state transition
has nine states. Therefore, if there are two, three and five
states, we can consider four, nine and twenty five states transi-
tions, respectively. Through this traffic trend state embedding
method, the overall performance of the LSTM-based source-
side DoS detection method can be improved. However, the
source-side attack detection system located in a single site
lacks a global view for detecting attacks that are incoming
from multiple sites simultaneously.

B. TRUST MANAGEMENT MODULE

In order to improve performance by detecting attacks coming
from multiple sites and sharing detection results, the proposed
source-side attack detection system is located in multiple
sites. However, if the detection result of low-performance
source-side attack detection systems are also aggregated,
the performance of collaborative attack detection can be
degraded. In order to mitigate the performance degradation
of collaborative attack detection, it is necessary to manage
the collaborators located in multiple sites. Before the collab-
orative source-side attack detection framework is activated,
the proposed trust management module selects the collabo-
rators according to the weight that is calculated through the
simulation. In order to evaluate the performance of all source-
side attack detection systems, the trust management module
periodically sends test messages to each site and aggre-
gates the detection results. According to the accumulated
detection results of simulation by sending the test messages,
the high-performance source-side attack detection system is
registered in the list of collaborator. On the other side, the
low-performance source-side attack detection systems are
removed from the list of collaborators. The trust management
module sends the consultant messages to collaborators which
are recorded on the list. Then, the trust management module
receives the feedback messages from each collaborators.

1) TEST MESSAGE
In order to verify the performance of source-side attack detec-
tion system of collaborators, the trust management module
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sends the test messages periodically to all of the sites. The
test message is a “fake” consultant message for simulation
and includes the attack ratio a’* estimated from the source-
side attack detection systems. After receiving the result of test
message, the collaborators execute the detection simulation
and the false positive simulation. For the detection simulation
in collaborators, the volume of observed traffic s, which is
managed from the matrix S applies the attack ratio @’ to
generate the volume of attack traffic sy, in 7" time window
for test as the following equation 9.

Stest, = Sz * a'me )

In the 7" time window, the detection simulation d; is
determined by comparing the detection threshold 6, with the
volume of attack traffic sy, as shown in the equation 10.

1if Stest, = 0.

d. = .
0 if Stest, < 91

(10)

The detection simulation dilj from collaborator / at the

i" time window on j” day is aggregated on the trust

management module and managed in the detection matrix

! !
dyy - d
D = : . - |. This detection matrices of col-
l l
dip - d

laborators are managed in the set of detection matrices,
D = {Dyu, Dg, ..., Dp}. Because of the traffic characteristics
observed in the network of collaborators, the false positive
can occur from source-side attack detection modules. It is
necessary to simulate whether the false positive occur or not.
In the z* time window, the false positive simulation f; is
determined by comparing the threshold 6, with the observed
traffic s, which is managed from matrix S as shown in the
equation 11.

1 ifs,>6,

E=00 ifs. <6,

Y

The false positive simulation fl]l from collaborator [ at the
i time window on j day is also aggregated on the trust
management module and managed in the matrix of false

flll J;,l

positive F} = . This false positive matrices

1li T J;f
of collaborators are also managed in the set of false positive
matrices, F = {Fa, Fp, ..., Fp}. This simulation results are
used to calculate the weight representing the performance of
collaborators.

2) COLLABORATORS LIST MANAGEMENT

In order to improve the performance of collaborative detec-
tion, it is necessary to exclude a collaborator whose per-
formance is relatively low by network characteristics from
the list of collaborators. The performance of collaborators
can be represented by weights calculated through statistics
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of simulation results. To calculate the statistical weight, the
probability of detection p  and false positive pf  of col-
laborator k in z time window during the last N days are
represented as shown in the equation 12 and equation 13.

N dk

P = P(fF = :Zﬁ kel (12)
]:

. N f‘k

vl =Ptk = => & kel (13)

1

~.
Il

Then, the statistical weight w’zc of collaborator k in z* time
wmdow is estimated by adding the probability of detection
pZ  and the probability of false positive pf - The statistical
weight w is represented as shown in the equation 14.

wE=Bapl + (A= prxpl,. kel (14)

The coefficient S represents the specific importance of
pZ  and pf - The coefficient § has a constant value between
0 and 1. It means that the closer the value of coefficient § is
to 1, the greater probability of detection pd ' from all of the
source-side attack detection systems. We set the coefficient
B to 0.5 to equalize the probability of detection and the
probability of false positive.

3) CONSULTANT MESSAGE AND FEEDBACK MESSAGE
When the source-side attack detection systems detect the
attack, the trust management module sends the consultant
messages to the collaborators which are recorded in the list.
This consultant message is not for simulation. When the
attack occur in reality, the trust management module sends
the consultant message to all of the collaborators.

After the collaborators receive the consultant messages,
each of the source-side attack detection systems start to detect
the attack following equation 5. When the attack detection
of collaborators are finished, the trust management mod-
ule receives the feedback message of collaborators for the
determination of attack detection. The feedback message of
collaborator k in the z”* time window represents as FM? k=
(SRk ik, chk ). The feedback message FM k of the collaborator
k in th time window consists of the detectlon result SR’Z‘
the time window index tk and the changing rate of observed
traffic volume chk from collaborators However, if one of the
collaborators fa1ls to receive a feedback message by a network
problem, the collaborative detection can be delayed.

C. EVENT HANDLER MODULE

For communication between the collaborative detection
framework and the collaborators, the event handler module
needs to monitor the end-to-end network link state. However,
when links and devices errors are caused by unexpected traf-
fic volumes, network communication cannot work smoothly.
In order to reduce the recovering time about the failures of
links and devices, the proposed event handler module uses
the trustiness of links and switches derived from location
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trustiness [31]. The event handler module communicates with
the received requests to the corresponding components of
framework and routes requests and messages that are sent
to the collaborators. These messages managed by the event
handler module are as follows: test messages, consultant
messages and feedback messages.

D. COLLABORATIVE ATTACK DETECTION MODULE

A collaborative attack detection module is needed to finally
determine whether there is an attack using the aggregated
feedback messages from the collaborators. However, if non-
linearity such as high randomness and high burst rate are
observed in the network of collaborators, the performance
of collaborative attack detection methods that aggregate false
positive results show a relatively low detection rate. In order
to mitigate this performance degradation, we need to consider
the relationship between collaborators and the time depen-
dence between individual source-side attack detection results.
There are two proposed collaborative detection method:
Weight-based attack detection method and LSTM-based col-
laborative attack detection method.

1) WEIGHT-BASED COLLABORATIVE ATTACK DETECTION
METHOD

In order to statistically represent the performance of the
source-side DoS attack detection module, the proposed
weight-based attack detection method needs the performance
value that calculated the probability of detecting an attack and
the probability of falsely detecting the attack at a specific time
index. For the performance of the collaborators, the weight of
the collaborators are calculated from the trust management
module. The proposed weight-based attack detection method
calculates the weighted arithmetic mean WA, by using the
detection result SR; collected from the feedback aggregation
module and the statistics weight w’Z‘ in z” time window at
k site. The weighted arithmetic mean WA, formula in the
weight-based attack detection method is shown as shown in
the equation 15.

Zlcvel W]zC * SR]ZC
N
Zkel W]z{
If this weighted arithmetic average WA, is greater than
the specified threshold ¢k, the final detection result FR,

is determined to have been detected as shown in the
equation 16.

WA, = (15)

FRZ=!1 if WA = th 6
0 ifWA, <th

However, the performance of weighted collaborative attack
detection method is affected by the performance of the
source-side attack detection system. That is, if false positives
are observed frequently in the source-side attack detection
system, the performance of collaborative detection method
is also degraded. In order to improve the performance of col-
laborative attack detection, it is necessary to find patterns of
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FIGURE 4. Architecture of LSTM-based collaborative attack detection
model.

the feedback messages and the statistical weights aggregated
from collaborators. To recognize and learn patterns between
factors well, the proposed collaborative detection method can
also use LSTM.

2) LSTM-BASED COLLABORATIVE ATTACK DETECTION
METHOD
The proposed LSTM-based collaborative source-side attack
detection method learns the time dependency of detec-
tion results for individual collaborator, the relationship
between collaborators with performance, and finally deter-
mines whether attack is happened or not. Figure 4 depicts the
proposed LSTM-based collaborative attack detection model
architecture. This model consists of three LSTM layers and
dense layers. Dense layer uses the ReLU activation function.
The number of nodes in each layer is the number of collab-
orators. The input vector consists of four features including
the detection rate SR’Z‘ , the statistical weight w’z‘, the time
window index tf , and the changing rate of observed traffic
volume chlz‘ at z'* time window of collaborator k. The input
vector of collaborator k in the z* time window is given
as CI ’Z‘ = (SR’;, té‘ s ch’zf s w’Z‘). The proposed LSTM model
learns the input vector CI4, CI5, ... CIF consisting of the
detection information aggregated from collaborators from A
to P. This LSTM model regresses to collaboration result CR,
between 0 (normal) and 1 (attack). The finial detection result
FR; is determined by comparing the calculated collabora-
tion result CR, and the static threshold th as shown in the
equation 17.

FRZ==1 if CR. = th an

0 ifCR, <th

When the attack is detected by the collaborative attack
detection module, the final detection result FR; is sent to the
all of collaborators through the list of collaborator from trust
management module. According to the final detection result
FR, received from the collaborative attack detection module,
the source-side attack detection module of all collaborators
need to set the adaptive threshold of the (z + 1)’h time window
as shown in the equation 6.
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TABLE 1. Components of DoS attack detection methods.

Detection Source-side Traffic Collaborative
Method Detection Prediction Detection
LC_LBAT ﬁ‘ig‘fﬁz LSTM LSTM
LC STBAT | A9V 1 siarisiic LSTM
WC_LBAT ﬁﬂiﬁgﬁi LSTM Weight
WC_STBAT ﬁl‘i'f;‘:}tliovlz Statistic Weight
LBAT [16] ﬁﬂ;‘fﬁgﬁi LSTM X
STBAT [4] ﬁl‘igﬁ’;‘gﬁi Statistic X

IV. EVALUATION

A. DATASETS AND EVALUATION OVERVIEW

In order to evaluate the DoS attack detection method, we com-
pare the performance of the proposed collaborative source-
side attack detection method and the single source-side
attack detection method. Table 1 shows the components of
DoS attack detection method for performance comparison.
In the single-source-side attack detection methods, there
are seasonality-aware adaptive threshold (STBAT) [4] and
LSTM-based adaptive threshold (LBAT) [16]. When the
attack is detected, each method uses the adaptive threshold
and predicts traffic for next threshold setting. In order to
predict traffic on source-side network, the STBAT uses traffic
statistic and the LBAT uses the LSTM model. This LBAT can
use the static embedding and the dynamic embedding which
are represented as S(N) and D(N), where N is the number of
traffic states. Through the evaluation, the dynamic embedding
uses n and t set to 1 and 1%, respectively. The STBAT and
the LBAT can be used as source-side attack detection method
for the collaborative attack detection. In the collaborative
source-side attack detection methods, there is a weight-based
collaborative method (WC) and a LSTM-based collaborative
method (LC). Depending on the source-side attack detection
method used, these methods can be represented differently as
shown in table 1. In order to determine the detection result
finally, the WCs use the weight and the LCs uses the LSTM
model. Through the evaluation, the static threshold of WCs
set to 0.6 and the static threshold of LCs set to 0.1.

We evaluated the proposed method with the real-world
DNS request traffic collected from DNS-STAT:Hedgehog
which is operated by ICANN (Internet Corporation for
Assigned Names and Numbers). We collect DNS request
traffic from sixteen cities in three different countries: China,
Brazil and USA. Each dataset has DNS request traffic for
30 days between September thirteen and October twelve of
year of 2020. In order to analyze the relationship between
the performance of the proposed model and the extracted
non-linear features in detail, it is necessary to define it as an
equation. Non-linearity caused by irregular user behavior can
be distinguished into two categories. The first feature is char-
acterized by high jitter due to the continuously fluctuating
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FIGURE 5. Actual Shanghai DNS request traffic volume and non-linear feature extraction using STL decomposition.

behavior of users, and the second feature is characterized by
high burst ratio due to the sudden behavior of users. In order
to extract these jitter and burst rates from the observed traffic,
it is necessary to separate the seasonal traffic and the residuals
caused by irregular user behavior. Figure 5 shows actual DNS
traffic volume and non-linear feature extraction from Shang-
hai. We extract non-linear features using STL decomposition
from traffic volume [32]. The STL decomposition method
decomposes the observed traffic S; by additive decomposi-
tion of seasonality ST;, trend TR;, and residual R;, and it is
represented as equation 18.

S;=8T; +TR; +R; (18)

These seasonality ST;, trend TR;, and residual R; are used
to express burst rate BR and traffic jitter J. The burst ratio BR;
is the probability that a burst occurs in the z”* time window
for a specific period, and the burst B; and burst ratios BR are
represent as equations 19 and 20.

N R;
1 ifRi22*Z_ 1ﬁl
i

0 ifR; <2*Z, lN
N

Z%*mo

i=1

B; = 19)

BR (20)

The average of jitter J is a characteristic in which a certain
pattern is periodically repeated, and represents the ratio of
the residual excluding seasonality and trend from the traffic
volume. The average of jitter J is represented as equation 21.

N

Table 2 shows the average of traffic volume, the average of
traffic jitter, and the burst ratio of traffic for each DNS request
traffic. This burst rate BR and average of jitter J are extracted
from normal traffic and non-stationary traffic, and the perfor-
mance of the proposed method can be compared according

R;

(ST; + TR;)) * N @h

)*100
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TABLE 2. Datasets of DNS request traffic.

[ Country | City | Arg.Volume [ ArglJitter | Burst ratio |
Xining 130.5 10% 8%
China Zhengzhou 9854 9% 9%
Shanghai 10770.38 8% 13%
Wuhan 6555.24 5% 10%
Rio de Janeiro 1179 9% 13%
Brazil Uberlandia 7539.81 8% 11%
Sao Paulo 6416.57 6% 11%
Fortaleza 1305.7 6% 12%
Lawrence 525.78 13% 11%
USA Wilmington 756.39 10% 11%
(East) Denver 1069 5% 13%
Reston 5342.99 6% 9%
Portland 78.2 9% 8%
USA Los Angeles 3999.22 7% 11%
(West) San Jose 1040.11 7% 11%
Anchorage 165.05 4% 9%

to the degree. When the burst ratio and the average of jitter
is relatively high, the traffic behaves more in a non-linear,
random and bursting manner. That is, traffic with relatively
low jitter and low burst ratio behaves more in a linear and
seasonal manner, while traffic with relatively high jitter and
high burst ratio behaves more in a non-linear, random, and
burst manner.

The traffic of the first 10 days of each dataset is used to
train both of STBAT and LBAT, and the following 10 days
of each dataset are used to calculate statistic weight for
WC_LBAT, and the following 8 days of each dataset are
used to train LC_LBAT, and the last 2 days of each dataset
are used as a test set for evaluating how effectively each
system detects the attack traffic mixed in legitimate traffic.
For evaluation, we select 36 time window (20%) indices
randomly from the test set, and infuse the attack traffic by
increasing the volume of the traffic up to 10%. For each
dataset, we evaluate the performance of STBAT and LBAT
and summarize the result. We use a detection rate, false
positive rate and balanced accuracy to evaluate each method.
The detection rate is the percentage of detected attack when
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FIGURE 6. Performance comparison of collaborative source-side attack detection methods and source-side attack detection methods under highest burst
ratio(Shanghai). (a) Detection Rate. (b) False Positive Rate. (c) Balanced Accuracy.

an attack is granted. The higher the detection rate, the higher
the performance of the method. The false positive rate is the
percentage of falsely detected attacks when the attack does
not be granted. The higher the false positive rate, the lower
the performance of the method. The balanced accuracy is
the arithmetic mean of the detection rate and true negative
rate. The main reason of using balanced accuracy is to see
at a glance the difference in performance of the compared
methods using the detection rate and the false positive rate.
If the balance accuracy is high, the accuracy of the method is
high.

B. PERFORMANCE COMPARISON

In order to understand the impact of burstiness to the proposed
method, we evaluate the performance with various margins
for the souce-side attack detection methods: LC_LBAT_D(9),
WC_LBAT_D(9), LBAT_D(9), and STBAT. Figure 6 shows
the performance comparison of the collaborative source-side
attack detection methods and the single source-side attack
detection methods under 2020 Shanghai DNS request traffic
which has highest burst ratio between datasets. Because these
methods detect the attack by comparing the observed traffic
with the adaptive threshold to which the margin is applied, the
detection rate and false positive rate are measured according
to the percentage of margin.

First, we compare the performance between LBAT_D(9)
and STBAT which are the single source-side attack detection
methods. LBAT_D(9) shows relatively higher detection rate
and false positive rate than STBAT. That is, LBAT_D(9)
aggressively adjusts the detection threshold to detect attack
traffic based on the fine grained traffic trend embedding, and
italso increases the false positive rate as a side effect. Because
of this, LBAT_D(9) and STBAT achieve the similar balanced
accuracy when the margin is 4%. However, if the single
source-side attack detection get support from multiple sites,
the performance of attack detection can show higher perfor-
mance than the single source-side attack detection method.

Second, we compare the performance of the weight-
based collaborative source-side attack detection method
WC_LBAT_D(9) and the single source-side attack detection
methods. At the efficient margin 4%, WC_LBAT_D(9) shows
around 3% higher the detection rate and shows around 12%
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lower the false positive rate than LBAT_D(9) and STBAT.
That is, WC_LBAT_D(9) can effectively reduce the false
positive rate by sharing the detection results of collabora-
tors. However, if the accuracy of the final detection result
which is shared with the collaborators can be increased,
the performance of collaborative attack detection methods
can be improved. By using an LSTM model that can learn
time dependency and the relationship of collaborators from
aggregated information of collaborator, the performance of
collaborative attack detection can be improved.

Third, we compare the performance WC_LBAT _D(9) and
LC_LBAT_D(9). LC_LBAT_D(9) shows about 8% higher
detection rate than WC_LBAT_D(9) by using various infor-
mation for the final attack detection. However, because of
slight irregular pattern between information when they are
learned on LSTM of collaborative attack detection module,
the false positive rate increases up to around 3%.

Finally, if the performance of each method is compared at
a glance as shown in Figure 6, the performance is good in
the order of LC_LBAT_D(9), WC_LBAT_D(9), LBAT_D(9),
and STBAT. However, depending on the type of source-side
attack detection methods in multiple sites, the performance of
the collaborative source-side attack detection methods may
differ.

Figure 7 shows the performance comparison of the collab-
orative source-side attack detection according to individual
source-side attack detection methods under 2020 Shanghai
DNS request traffic. The collaborative source-side attack
detection methods WCs and LCs are represented differently
depending on whether STBAT, LBAT_S(9), and LBAT_D(9)
methods are applied. In the case of WCs, these meth-
ods are represented as WC_STBAT, WC_LBAT_S(9), and
WC_LBAT_D(9), respectively. And In the case of LCs, these
methods are represented as LC_STBAT, LC_LBAT_S(9), and
LC_LBAT_D(9), respectively.

Because WCs use the detection result and the weight of
collaborators for the final detection result, the performance
of the WCs are affected by the type of source-side attack
detection methods. In other words, WCs can reduce false
positive rate while maintaining high detection rate. There-
fore, if the source-side attack detection method with the high
detection rate is adopted as collaborator of WCs regardless of
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the side effects, overall performance will be improved. At the
efficient margin 4%, WC_LBAT_D(9) and WC_LBAT_S(9)
show around 10% higher the detection rate than WC_STBAT,
and the false positive rates of WCs are similar.

For the final attack detection, LSTM models of LCs learn
the relationship and the time dependency between collabora-
tors, so LCs show higher detection rate than WCs. However,
because LSTM models of LCs learn irregular pattern between
information of collaborators, the false positive rates of LCs
can be higher. LC_LBAT_D(9) and LC_STBAT show around
10% higher detection rate but show around 4% lower than
WC_LBAT_D(9) and WC_LBAT_S(9) when the margin is
4%. In the case of LC_LBAT S(9), the source-side attack
detection result patterns may become somewhat irregular due
to static seasonal embedding. LC_LBAT_S(9) shows around
5% lower detection rate, but shows around 2% lower false
positive rate. Through this evaluation, it can be seen that
LC_LBAT_D(9) shows the highest performance. However,
the performance of the LBAT D(9) may change according
to jitter, which is one of the non-linear characteristics.

Figure 8 shows the performance comparison with datasets
which have different jitter level. As we described ear-
lier, datasets for Denver and Anchorage have low jitter
and datasets for Portland and Wilmington have high jitter.
In Figure 8, LJ and HJ stands for low and high jitter, respec-
tively. Each detection method, we use the same value of
margin as 4 which is used for the adaptive threshold, and
it is represented as M(4) suffix. We select a dataset with a

VOLUME 10, 2022

relatively low traffic volume in order to focus on the change
according to the jitter level. It is observed that the overall
detection rate decreases and the false positive rate increases
as the average of jitter increases. At this time, as shown in
the balanced accuracy, the performance of LBAT_S(9) and
LBAD_(9) is similar. Because LSTM can learn and miti-
gate irregular non-linear characteristics in traffic, LBAT can
keep its detection rate from around 95% down to around
69%, while STBAT drops its detection rate from 82% down
to 63%. Especially, the performance degradation happens
significantly when the network traffic has high randomness
by the high jitter. Though the randomness cause the per-
formance degradation, the LBAT mitigates this degradation.
This endurance against the randomness is observed in the
balanced accuracy result as well. In this way, the performance
of the collaborative source-side attack detection module,
LC_LBAT, may be lowered by multiple sites that represent
high jitter. In order to improve and maintain the performance
of the proposed framework, it is necessary to manage the
configuration of the collaboration network.

Figure 9 shows the performance comparison of the
LC_LBAT_D(9)_M(4) method according to the number of
collaborators which have different jitter. In the same way
as above, we select the effective margin of LC_LBAT_D(9)
as 4%. At this time, when we construct Low Jitter Collab-
orative network(LJCN) and High Jitter Collaborative net-
work(HJCN), we selected relatively low or high jitter datasets
as shown in Table 2. In the collaborative network composed
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of relatively low jitter, LICN, LC_LBAT_D(9)_M(4) shows
high detection rate and around 4% false positive rate regard-
less of the number of collaborators. However, because of the
increased overall randomness in the collaborative network
composed of relatively high jitter, HICN, the performance
of LC_LBAT_D(9)_M(4) becomes unpredictable. When the
number of collaborators which configure HICN is 12, the
detection rate is 72% and the false positive rate is around
3% in LC_LBAT_D(9)_M(4). When the number of col-
laborators which configures HICN is 8, the detection rate
is round 85% and the false positive rate is round 15% in
LC_LBAT_D(9)_M(4). In performance comparison with the
balanced accuracy, the fewer the number of HICNs, the lower
the performance of LC_LBAT_D(9)_M(4). Therefore, when
constructing a cooperative network, it is recommended to
exclude sites with relatively high jitter and high burst rate
from the list of collaborators.

V. CONCLUSION

In this paper, we propose the LSTM-based collaborative
source-side attack detection framework. In order to improve
the performance of source-side attack detection system
located in the target subnet, the proposed framework aggre-
gates the weight and traffic pattern from collaborators and
implement the LSTM based collaborative attack detection to
finally determine the attack detection. For the verification and
management of collaborator, the trust management module in
the proposed framework sends test messages to collaborator
in list periodically.

Through extensive evaluation of actual DNS request traf-
fic, the proposed LSTM-based collaborative source-side
attack detection method outperforms the previous single-
source-side attack detection method and the weight-based
collaborative source-side attack detection method. At an
effective margin of 4%, The proposed method shows the 25%
higher detection rate and a 10% lower false positive rate com-
pared to the single-source attack detection method at a valid
margin of 4%. The performance of the proposed collaborative
source-side attack detection method may vary depending on
the source-side attack detection method. If dynamic season-
ality embedding is applied, the performance of source-side
attack detection method can be improved. The performance
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of the proposed method can show higher performance by
excluding collaborators with high burst rate and jitter from
the collaborator list.

However, in the proposed framework, the availability of the
collaborative detection method can be changed depending on
the network link state. In addition, it is necessary to under-
stand the complex relationship of each site, not as a network
having a graph structure. For efficient link state prediction in
large-scale graph networks, it is necessary to study a hetero-
geneous graph embedding method that represents complex
relationships between links.
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